Size and Shape Parameter in DiaTest-ASM and Dialnspect software
the citation of ISO refers to E DIN ISO 9276-6:2010-02

Size and Shape Parameter in DiaTest-ASM and Dialnspect software
the citation of ISO refers to E DIN ISO 9276-6:2010-02

		DIN - ISO descriptor	also allowed	also used	old Dialnspect	description	Value range	formula	
Co		Compactness				to which degree is the particle similar to a circle	$0 . .1$	$C o=\frac{\sqrt{\frac{4 * A}{\pi}}}{x F \max }=\frac{x A}{x F \max }$	
Ro	X	Roundness			Compactness	related to area and max. Diameter	0... 1	$R o=\frac{4 * A}{\pi * x F \max ^{2}}=\left(\frac{x A}{x F \max }\right)^{2}$	
Comp	X				related to true perimeter and area	1...	$\operatorname{Comp}=\frac{P^{2}}{4 * \pi * A}$		
Coutl						convex Outline	related to convex perimeter and area	1...	$\text { cOutl }=\frac{P c^{2}}{4 * \pi * A}$
Ex	X	Extent					$0 . . .1$	$E x=\frac{A}{x F \max * x F \min }$	
Br	X	Boxratio Br				ratio of the projected surface to the feret box	$0 . .1$	$B r=\frac{A}{x F \min * x L F}$	
Dialnspect 2010		Shape descriptors -> meso descriptors							
C	X	Circularity C			1/Compactness^1/2	to which degree is the particle similar to a circle, considering the smotthness of the perimeter	$0 . .1$	$c=\sqrt{\frac{4 * \pi * A}{P^{2}}}=\frac{x A}{x P}$	
$\begin{gathered} \mathrm{S} \\ \mathrm{Cl} \end{gathered}$	X X	Solidity global surface conc				overall convexity of an object, using area of convex hull and area	0... 1	$\begin{array}{r} S=\frac{A}{A_{c}} \\ C I=\frac{A c-A}{A} \end{array}$	
Cc	X	Concavity					$0 . .1$	$C c=\frac{A c-A}{A c}$	
Cv	X	Convexity			1/Roughness	Perimeter convex / Perimeter		$C v=\frac{P c}{P}$	

		DIN - ISO descriptor	also allowed	also used	old Dialnspect	description	Value range	formula
Rb	-	Particle robustness	$\Omega 1$			defined by the number of erosions (omega2) necessary to let the particle disappear		$\boldsymbol{\Omega}_{1}=\frac{2 * \omega_{2}}{\sqrt{A}}$

		Shape descriptors Roughness descriptor			
DF	-	Fractal Dimensions DF		The relation between the length of perimeter P(lambda) and the length lambda of the steps is liinear on log-log plot, known as Richardson plot. The data are first normalized by the maximum feret diameter. The upper border for the step size is lambda $=0.3^{*} \mathrm{xFmax}$. The equation of the straight line;	$\log (P(\lambda))=\left(1-D_{F}\right) * \log (\lambda)+\log (b)$

Greyscale and color parameters in Dialnspect 2010

